Systematic coarse-graining of potential energy landscapes and dynamics in liquids.
نویسنده
چکیده
Recent efforts have shown that the dynamic properties of a wide class of liquids can be mapped onto semi-universal scaling laws and constitutive relations that are motivated by thermodynamic analyses of much simpler models. In particular, it has been found that many systems exhibit dynamics whose behavior in state space closely follows that of soft-sphere particles interacting through an inverse power repulsion. In the present work, we show that a recently developed coarse-graining theory provides a natural way to understand how arbitrary liquids can be mapped onto effective soft-sphere models and hence how one might potentially be able to extract underlying dynamical scaling laws. The theory is based on the relative entropy, an information metric that quantifies how well a soft-sphere approximation to a liquid's multidimensional potential energy landscape performs. We show that optimization of the relative entropy not only enables one to extract effective soft-sphere potentials that suggest an inherent scaling of thermodynamic and dynamic properties in temperature-density space, but that also has rather interesting connections to excess entropy based theories of liquid dynamics. We apply the approach to a binary mixture of Lennard-Jones particles, and show that it gives effective soft-sphere scaling laws that well-describe the behavior of the diffusion constants. Our results suggest that the relative entropy formalism may be useful for "perturbative" type theories of dynamics, offering a general strategy for systematically connecting complex energy landscapes to simpler reference ones with better understood dynamic behavior.
منابع مشابه
Identification of RNA-binding sites in artemin based on docking energy landscapes and molecular dynamics simulation
There are questions concerning the functions of artemin, an abundant stress protein found in Artemiaduring embryo development. It has been reported that artemin binds RNA at high temperatures in vitro, suggesting an RNA protective role. In this study, we investigated the possibility of the presence of RNA-bindingsites and their structural properties in artemin, using docking energy ...
متن کاملMultiscale coarse-graining of ionic liquids.
A recently developed multiscale coarse-graining (MS-CG) approach for obtaining coarse-grained force fields from fully atomistic molecular dynamics simulation is applied to the challenging case of the EMIM+NO3- ionic liquid. The force-matching in the MS-CG methodology is accomplished with an explicit separation of bonded and nonbonded forces. While the nonbonded forces are adopted from this forc...
متن کاملOn the importance of shear dissipative forces in coarse-grained dynamics of molecular liquids.
In this work we demonstrate from first principles that the shear frictions describing dissipative forces in the direction normal to the vector connecting the coarse-grained (CG) particles in dissipative particle dynamics (DPD) could be dominant for certain real molecular liquids at high-resolution coarse-graining. This is in contrast to previous works on bottom-up DPD modeling and indicates tha...
متن کاملPhase Field Crystals as a Coarse-Graining in Time of Molecular Dynamics
Phase field crystals (PFC) are a tool for simulating materials at the atomic level. They combine the small length-scale resolution of molecular dynamics (MD) with the ability to simulate dynamics on mesoscopic time scales. We show how PFC can be interpreted as the result of applying coarse-graining in time to the microscopic density field of molecular dynamics simulations. We take the form of t...
متن کاملMultiscale Coarse-Graining of the Protein Energy Landscape
A variety of coarse-grained (CG) models exists for simulation of proteins. An outstanding problem is the construction of a CG model with physically accurate conformational energetics rivaling all-atom force fields. In the present work, atomistic simulations of peptide folding and aggregation equilibria are force-matched using multiscale coarse-graining to develop and test a CG interaction poten...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 137 8 شماره
صفحات -
تاریخ انتشار 2012